Indian Statistical Institute M.Math I Year First Semester Examination, 2005-2006 General Topology

Time: 3 hrs

Date:25-11-05

Attempt any five questions. All questions carry equal marks. Any result proved in the class may be cited and used without proof.

1. a) Let X be compact and Hausdorff, $A \subsetneq X$ be closed. Show that X/A is homeomorphic to the one-point compactification of X - A.

b) Describe explicitly the quotient topology on the quotient group \mathbb{R}/\mathbb{Q} , \mathbb{R} being the real line, \mathbb{Q} the set of rationals, treated as a subgroup of the group $(\mathbb{R}, +)$.

- 2. a) Prove that GL(n, C) is path connected (hint; use the polynomial p(z) = det((1 z)I + zA) for A ∈ GL(n, C)).
 b) Prove that any discrete subgroup of S¹ must necessarily be finite cyclic.
- 3. a) Let X be any space. Show that CX, the cone over X is contractible.
 b) Show that Sⁿ⁻¹ is a deformation retract of Sⁿ {N,S}, N and S being the north and south poles of Sⁿ respectively.
- 4. Let $f, g: X \to S^n$ be continuous maps with $f(x) \neq -g(x) \ \forall x \in X$. Prove that $f \simeq g$.
- 5. Let X be a space. Then show that X is path connected if and only if all constant maps: $X \to X$ are homotopic to each other.
- 6. Let $R_{\theta} : \mathcal{S}^1 \to \mathcal{S}^1$ be a rotation by angle θ . Show that R_{θ} is homotopic to the identity map: $\mathcal{S}^1 \to \mathcal{S}^1$.
- 7. Let G be a connected group, H a discrete normal subgroup. Prove that $H \subseteq Z(G)$, the centre of G.